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Refinable functions underlie the theory and constructions of wavelet systems on
the one hand and the theory and convergence analysis of uniform subdivision algo-
rithms on the other. The regularity of such functions dictates, in the context of
wavelets, the smoothness of the derived wavelet system and, in the subdivision con-
text, the smoothness of the limiting surface of the iterative process. Since the
refinable function is, in many circumstances, not known analytically, the analysis of
its regularity must be based on the explicitly known mask. We establish in this
paper a formula that computes, for isotropic dilation and in any number of
variables, the sharp L2 -regularity of the refinable function , in terms of the spectral
radius of the restriction of the associated transfer operator to a specific invariant
subspace. For a compactly supported refinable function ,, the relevant invariant
space is proved to be finite dimensional and is completely characterized in terms of
the dependence relations among the shifts of , together with the polynomials that
these shifts reproduce. The previously known formula for this compact support case
requires the further assumptions that the mask is finitely supported and that the
shifts of , are stable. Adopting a stability assumption (but without assuming the
finiteness of the mask), we derive that known formula from our general one.
Moreover, we show that in the absence of stability, the lower bound provided by
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that previously known formula may be abysmal. Our characterization is further
extended to the FSI (i.e., vector) case, to the unisotropic dilation matrix case, and
to even snore general setups. We also establish corresponding results for refinable
distributions. � 2000 Academic Press

Key Words: refinable equations; refinable functions; wavelets; smoothness;
regularity; subdivision operators; transition operators.

1. INTRODUCTION

1.1. General

Let , be a function in L2(Rd). We say that , is (dyadically) refinable if
there exists a 2?-periodic function m such that, a.e.,

,� (2 } )=m,� .

The function m is usually referred to as the refinement mask, and the
refinable function is sometimes referred to as a father wavelet and�or a
scaling function. The importance of refinable functions sterns from their
role in the construction of wavelet systems via the tool of multiresolution
analysis (cf. [D2]) and in the analysis of subdivision schemes (cf. [DGL,
DyL] and [RiS]).

Smooth scaling functions are particularly desired. In the context of sub-
division, the smoothness of the scaling function dictates the smoothness of
the limiting surface of the process. In wavelet constructions, the smooth-
ness of the staling function is passed on to the wavelets, hence dictates the
smoothness of the wavelet system. One should, thus, keep in mind that the
scaling function , is, in most circumstances, not known analytically, hence
the analysis of the smoothness properties of the refinable , must be based
primarily on its mask m. This can be done, although not with ease; for
example, a key ingredient in the success of Daubechies' construction of
univariate orthonormal systems in [D1] was her ability to prove that the
underlying scaling function can be selected to be as smooth as one wishes.

Initiated with the study of the smoothness of Daubechies' scaling func-
tions, the study of smoothness properties of refinable functions via their
masks has become one of the cornerstones of wavelet theory. Usually, this
study is carried out under one or more of the following conditions (all
notions used here will be defined in the sequel):

(1) The spatial dimension is 1.

(2) The number of scaling functions is 1 (aliased the ``scalar case,''
and�or the ``PSI case,'' and which is the only case we had described so far).

(3) The function , is of compact support or the mask m is a tri-
gonometric polynomial (the latter implies the former, but not vice versa).
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(4) The shifts (i.e., integer translates) of , are orthonormal; alter-
natively, these shifts are stable (i.e., form a Riesz basis).

(5) The dilation is dyadic, or, at least, isotropic.

(6) , can be factored into ,1 V ,2 , with ,1 a smooth, well-understood
(refinable) component, and ,2 some distribution.

The analysis of the regularity of Daubechies' scaling functions was first
done by inspecting directly the infinite product representation

,� = `
j>0

m( } �2 j),

and estimating the decay of the Fourier transform. A treatment along these
lines is given in [D1] and [D2], and already this approach establishes the
fact that the underlying scaling function can be selected to be as smooth as
one wishes, by choosing the B-spline factor to be of high order. (Recall that
each Daubechies' scaling function is the convolution of a B-spline with a
suitable compactly supported distribution). While this approach yields the
asymptotic relation between the smoothness and the approximation order
of Daubechies' functions (with the latter being explicitly known), it does
not provide sharp estimates for the smoothness of a given fixed scaling
function in this class, but only lower bounds on that smoothness. Later on,
Cohen and Daubechies, [CD], used a similar method for estimating the
smoothness of bivariate refinable functions, which are refinable with respect
to the dilation matrix

\1
1

&1
1+ .

The use of the transfer operator in the analysis of the smoothness of
refinable functions appears first in the work of Deslauriers and Dubuc,
[DD] Eirola, [E], and Villemoes, [V] (see also the related work [L]).
Those studies are concerned with a univariate compactly supported
refinable function whose mask is a polynomial, and are based on the fac-
torization of the function into the convolution of a B-spline and ``another''
factor. (Indeed, as the general analysis of the present paper shows, it is
somewhat easier to estimate negative smoothness parameters of refinable
elements.) There, a lower bound estimate on the smoothness of the
refinable function is provided, and the lower bound is then shown to be
sharp under the assumption that the shifts of the scaling function are
stable.

The analysis of the smoothness of compactly supported univariate
refinable functions via factorizations on the Fourier domain was
generalized by Cohen, Daubechies and Plonka, to the FSI (i.e., vector)
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case, [CDP]. They used a factorization technique that was developed in
[P], and, upon assuming that the shifts of 8 are linearly independent (an
assumption stronger than stability, and which forces the mask to be poly-
nomial), provided lower bounds on the smoothness of 8. Recently, using
factorization techniques on the ``time'' domain, Micchelli and Sauer, [MS],
studied the smoothness of univariate compactly supported PSI and FSI
refinable functions. In [MS], a lower bound estimate on the smoothness of
the refinable functions is provided and the lower bound is then shown to
be sharp under the assumption that the shifts of the refinable functions are
stable. While this work still assumes the mask(s) to be polynomial,
estimates are obtained there not only in the L2-case (aliased in the
literature ``Sobolev exponents'') but also in the general Lp -space (aliased
``Besov exponents.'' The alias ``Ho� lder exponents'' refers to the L� -case).
More recently, Jia, Riemenschneider and Zhou [JRZ] obtained results
similar to those of [MS] by using the subdivision operators and transfer
operators and without using any factorization technique. We stress that the
results in [CDP], [MS] and [JRZ] are ``global'' in the sense that they
only estimate the smoothness of the least smooth function in the vector 8,
and cannot determine the smoothness of any other function in that vector.

In contrast with the univariate case, masks of multivariate refinable func-
tions are not guaranteed to be factorable in any convenient way. In the PSI
multivariate situation, and under the additional assumption that the
refinable function is the convolution of a box spline with another factor,
Goodman, Micchelli and Ward [GMW] obtained some estimates of the
smoothness. Other results concerning this same problem also obtained by
Cohen and Daubechies in [CD1] and by Dahlke, Dahmen and Latour in
[DDL]. Aiming at estimating the smoothness of certain multivariate inter-
polatory refinable functions that were constructed in [RiS], Riemenschneider
and Shen provided a method for bounding that smoothness from below
without using the factorization of the mask (they also provided simplified
estimates for factorable masks). Their technique was generalized by Shen in
[S] resulting in lower bounds on the global smoothness in the FSI case.
Both [RiS] and [S] deal with the dilation matrix s=2I. Jiang, [Ji],
generalized the smoothness result of [S] to a general dilation matrix s.

Most recently, the transfer operator approach was employed (indepen-
dently) by Jia [J1], and by Cohen, Gro� chenig and Villemoes, [CGV]. The
results of these two papers are closely related: both show, without assum-
ing any possible factorization, how to provide lower bounds on the
smoothness of a single multivariate compactly supported refinable function,
and both make fairly minimal assumptions on the dilation matrix (In [J1],
the dilation is assumed to be isotropic, i.e., a constant multiple of a unitary
transformation; even less is assumed in [CGV], but, alas, they have to
measure smoothness, in case the dilation is not isotropic, in non-standard
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ways). Both articles show that, if the refinable function has stable shifts,
then the lower bound estimates are sharp, i.e., they characterize the
smoothness class of the function. It was the reading of these two articles,
and especially the use of ``damping factors'' in [CGV], that had led us to
the understanding of the regularity problem, thereby to the results reported
in the present paper.

Finally, we remark that there are several papers devoted to the estima-
tion of the smoothness of the refinable function directly in the ``time''
domain. The interested readers can find details on those approaches in
[DL1,2], [MP] and [DLM].

While, as partially detailed above, many important advances on the
regularity problem have been made so far, the current literature is far from
offering a comprehensive solution to this question. In particular, there are
only a handful of results that characterize smoothness without making the
stability assumption. (An exception is [LMW], where Lau, Ma and Wang
gave a characterization of the smoothness in the univariate PSI case
without assuming the stability. One must note, however, that the univariate
case is, once again, simpler, due to the availability of factorization techni-
ques).

It is probably worth emphasizing that the smoothness of the scaling
function is completely independent of the stability of it shifts. With that in
mind, one should desire to have an analysis of the smoothness property
that does not rely on that stability assumption.

We also add that the currently known lower bounds on the smoothness
are not sharp in general: indeed, we provide examples in this paper of
univariate compactly supported scaling functions which, on the one hand,
are as smooth as one wishes, while, on the other hand, the lower bound
estimates from the literature (we used those of [J1] and [CGV]) cannot
ascribe any amount of smoothness to these functions.

Furthermore, in the FSI setup (i.e., when several scaling functions are
involved), the present literature on the regularity problem is even more
limited in nature; in particular, we are not aware of any characterization of
the smoothness parameter in the multivariate FSI case (i.e., several
variables, a vector of scaling functions), let alone we do not know of any
result in the literature (even in one variable) that can be applied to
estimate separately the smoothness of each individual scaling function.

The discussion in this paper is confined to the development of the theory,
and the theory only. It is then natural to question (as a referee of this
article did) whether the characterizations of this paper can be implemented.
The problem is particularly interesting in the absence of stability, since the
characterization provided in this paper then requires input that is not
available by a mere inspection of the mask. We would like, thus, to refer
to the subsequent article, [RST], where an algorithm for computing the
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smoothness parameter (for bivariate scaling functions) is developed, and
tested.

In the main development of this paper, we assume the scaling function(s)
to be of compact support. This is an important assumption, that allows one
to provide a characterization based on the action of a linear operator act-
ing on a finite dimensional space. In contrast, nowhere in this article we
make the stronger assumption that the mask is a trigonometric polynomial.
A referee had asked us whether we currently have interesting examples of
compactly supported scaling functions whose masks arc not trigonometric
polynomials, and whether, given a non-polynomial mask, we can effectively
decide whether the corresponding scaling function(s) has compact support
or not. Unfortunately, our current answer to each of these questions is in
the negative (we do provide in Section 2 examples of compactly supported
scaling functions whose masks are not polynomial, but we are reluctant to
label them as ``interesting''). We avoid the stronger assumption that the
underlying mask is a trigonometric, polynomial, simply because that
assumption does not lead us to any strengthening of our results, nor to any
simplification in our arguments.

1.2. An Overview of This Paper

In the current paper we characterize completely the L2 -regularity of
refinable functions, or, more generally, distributions. The analysis is carried
out without any restriction on the refinable element: it may be a vector or
a singleton, it may be an L2-function, or a tempered distribution. It may
be compactly supported, or it may decay very slowly at �, and we do not
assume the shifts of the scaling function(s) to satisfy any stability or similar
assumption. Upon imposing a compact support assumption on the scaling
function(s), we can make crisper, cleaner statements.

The paper is laid out as follows. In the rest of the introduction, we out-
line the main idea that is invoked this article, and state and prove the two
key lemmata that unravel the regularity problem. In Section 2, we discuss
in detail the PSI case, under the assumptions that , is compactly sup-
ported, and that the dilation is isotropic. In Section 3, we present our
general setup, and derive the basic results. In Section 4, we discuss equiv-
alent definitions of standard smoothness spaces.

Here is a short summary of the main finding of this paper. It is described
in a general PSI setup, but under the assumption that , is an L2 -function
(and not a mere distribution). The treatment of refinable distributions is
obtained by modifying slightly the description below. The treatment of the
FSI case (when the refinable element is a vector of functions) is obtained
by generalizing correctly the observations made below. The description
assumes intimate familiarity with wavelet terminology. Of course, notions
that are not defined here will be defined in the main body of this paper.
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Let , # L2(Rd) be arbitrary. Its autocorrelation function ,* is then
defined by

,*: x [ |
Rd

,,( } &x).

The L2 -regularity of , is completely determined by the smoothness of its
autocorrelation function at the origin: let { be a ``suitable'' difference
operator of order 2l (which means that { is a finite linear combination of
integer translations, that it annihilates all polynomials of degree <2l, and
that its Fourier series is non-negative everywhere while being positive in
some punctured origin-neighborhood). Then (as it must be well-known),
given any :<l, {h,*(0)=O(h2:) if and only if , lies in the Besov space
B:

�(L2(Rd)) (which is slightly larger than the Sobolev space W :
2(Rd); here

{h is the h-scale of {). Therefore, if we denote by th the discrete Fourier
transform of {h,*, the L2 -smoothness of , is completely determined by
rate of decay of

{h,*(0)=|
Td

th=&th&L1(Td ) ,

provided { is of sufficiently large order.
Now assume, further, that , is refinable with bounded mask m, and let

T be the transfer operator of { :=|m|2 (this operator is defined in the
sequel). The crux of the analysis of this paper is the observation that, if the
dilation matrix s is a scalar multiple by *>1 of a unitary matrix, then, for
each hk :=*&k we have that

|
Td

thk
=|

Td
T k(t1).

For a more general (i.e., unisotropic) dilations, the above equality does not
hold, still, its left hand side can be bounded above and below in terms of
the right hand side (for appropriate choices of k).

In conclusion, iterations with the transfer operator determine completely
the regularity of ,, if we choose correctly the initial seed t1 . One then com-
putes that t1=t,� 2, with t the Fourier series of {, and ,� 2 is the discrete
Fourier transform of ,*, the latter is well-known to be an eigenvector of
T corresponding to the eigenvalue 1. This lays ground to the belief that t1

is computable, and that the entire process is feasible.
In all examples of interest (that we are aware of) ,� is known to be

bounded. In that event, we obtain that t1�const t, hence iterating with the
explicitly known t provides one with lower bounds on the sharp regularity
parameter. Conversely, if 1�,� is bounded, then t1�const t, hence iterating
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with t provides one with upper bounds on the sharp regularity parameter.
Consequently, if ,� is bounded above and away from zero, iterations with
t are on par with iterating with t1 . The boundedness above and below of
,� is a property known as the stability or the Riesz basis property of the
shifts of ,, and in this way we recover the current literature results on the
estimation of regularity under that Riesz basis assumption. In the absence
of the stability assumption, a deeper analysis, based on the dependence
relations satisfied by the shifts of ,, can be made to allow one to choose
an alternative good initial seed.

Finally, if , is compactly supported, is refinable with respect to any given
dilation matrix s, and its mask is bounded (but is not necessarily a polyno-
mial), then we show that after few iterations the function T k(t,� 2) must lie
in some well-defined finite dimensional space of trigonometric polynomials.
This means that, in the compact support case, a slightly cruder analysis of
the regularity of , can be given in terms of the spectral radius \ of the
transfer operator, when restricted to an appropriate finite-dimensional sub-
space of trigonometric polynomials. That approach leads to a simple formula
that connects the regularity parameter :(,) of , (i.e., the maximal number
such that , # W :

2(R
d), for every :<:(,)) and the above-mentioned \.

Remark. Our analysis indicates that in the compact support case,
unless :(,) above is non-positive, the relation , # W :(,)

2 (Rd) never holds.
That should come at no surprise: in the case of a B-spline, for example,
:(,)=k&1�2, with k, the order of the B-spline; the B-spline, indeed, does
not lie in W k&1�2

2 (Rd); it, nevertheless, lies in the Besov space Bk&1�2
� (L2).

This slightly weaker relation, i.e., that , # B:(,)
� (L2) is possible: it is shown

to be related to non-defectiveness of certain eigenvalues of the transfer
operator.

During the preparation of this paper, we debated whether to analyse the
regularity of the function , is terms of ``plain'' Sobolev spaces, or in term
of the more accurate Besov spaces B:

�(L2(Rd)). Since the former presentation,
in the PSI case, is conceptually simpler, and since we already flood the
reader with fine details, insights and hindsights, we decided to stick with
Sobolev space analysis.

1.3. The Two Key Lemmata

Our approach is largely based on two fairly simple observations, that we
list and prove below. First, let us extend the notion of ``a refinable func-
tion,'' and introduce the underlying operators employed in the analysis.

Let s be a dilation matrix. By that we mean any d_d integer invertible
matrix which is also expansive, i.e., its entire spectrum lies outside the
closed unit disc. Let , be a tempered distribution whose Fourier transform
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is a function. We say that , is refinable with respect to the dilation matrix
s, if there exists an essentially bounded 2?-periodic function m, such that,
almost everywhere,

D&1,� =m,� , (1.1)

with D the dilation operator

Df : | � f (s*&1|).

The subdivision operator T*m associated with m is defined as follows:

T*m : L2(Td ) � L2(Td): f [ - |det s| m D&1f. (1.2)

Note that, with { :=|m|2,

T*: f [ |det s| { D&1f

is, up to a normalization factor, the subdivision operator associated with
the autocorrelation ,* (say, in case , # L2(Rd)).

The adjoint of the subdivision operator T* is the transfer or transition
operator T :=T{ . To define this operator, let

1

be any representer set of the quotient group 2?(Zd�s*Zd). Then T is defined
as follows:

T: L2(T
d) [ L2(Td): f [ D \ :

# # 1

({f )( } +s*&1#)+ . (1.3)

For example, in the case of dyadic dilations in one dimension, 1 can be
chosen as [0, 2?], and T becomes

(Tf )(|)=({f ) \|
2++({f ) \|

2
+?+ .

Now, let & be a compactly supported distribution (not necessarily
refinable) for which

' :=, V &

is known to be in L2 . Set

'~ 2 := :
j # 2?Zd

|'̂( } + j)|2.
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It is well-known that the series converges in L1 on

C :=[&?, ?]d

to the discrete Fourier transform of the autocorrelation function '*.

Lemma 1.4. Let t be a bounded 2?-periodic function. Then, with ,, & and
'~ 2 as above, we have for every k=0, 1, 2, ...:

&T k( |t|2 '~ 2)&L1(Td )=&t'~ T*k
m 1&2

L2(Td )=|
Rd

|,� |2 Dk( |t&̂|2). (1.5)

Proof. Upon changing variables, we get from the right-most expression,
after using k times the refinement equation:

|det s|k |
Rd

|t&̂|2 |,� | 2 `
k&1

j=0

{(s* j } )=|
Rd

|t'̂|2 |T*k
m 1| 2.

Writing Rd as the disjoint union of integer shifts of C=[&?, ?]d, and
using the 2?-periodicity of t and T*k

m 1, we obtain the right equality in
(1.5). The left-most equality follows front the fact that |T*k

m 1|2=|T*k1|,
together with the fact that T is the adjoint of T*. K

An identical argument to that used in the proof of the above lemma
shows that, under the same conditions, and for every f # L2(Td ),

(T k(t'~ 2), f ) L2(Td)=|
Rd

f� |,� |2 Dk(t |&̂|2). (1.6)

Note that this identity explicitly identifies T k(t'~ 2) as the 2?-periodization
of |,� |2 Dk(t |&̂|2).

Next, assume that , is compactly supported, let

0,

be the convex hull of supp ,&supp , and set

Z, :=0, & Zd.

Also, let

H, (1.7)
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be the space of all trigonometric polynomials with spectrum in Z, , i.e.,

f # H, � f (|)= :
j # Z,

c( j) eij } |.

If m is a trigonometric polynomial, it is easy to see then that for (at least)
certain dilation matrices, and for any trigonometric polynomial t, T kt # H,

for all sufficiently large k. Our next lemma rigorously establishes a slightly
different assertion, that for certain polynomials t, for any dilation matrix (as
defined in the beginning of the present subsection), and without assuming
the polynomiality of the mask, the relation T kt # H, holds for all large k.

Lemma 1.8. Let ,, &, ', be as above, and assume that , is compactly sup-
ported. Let q: Zd � C be any finitely supported sequence. Then, there exists
an integer k0 , that depends on supp ,, supp &, and supp q, as well as on the
dilation matrix s (but on nothing else), such that, for k�k0 , T k(q̂'~ 2) # H, .

Proof. Set f 6 for the inverse Fourier transform of f. Let = be the dis-
tance between 0, and Zd "Z, . Since s is expansive, we can find a suf-
ficiently large k0 such that supp((Dk0(q̂ |&̂|2))6) lies in a ball centered at the
origin with radius =. For each k�k0 , this implies that function
gk :=(|,� | 2 Dk(q̂ |&̂| 2))6 is supported in a region that is disjoint of Zd"Z,

(since it is the convolution product of the function ,* which is supported
in 0, with a distribution that is supported in an =-ball). Thus, choosing
t :=q̂ and f :=ej in (1.6), with ej : | [ eij } | the exponential with frequency
j, we get that

(T k(q̂'~ 2), ej)L2(Td )= gk(& j)=0,

for j # Zd"Z, , and for k>k0 . K

2. THE PSI CASE (UNDER SIMPLIFYING ASSUMPTIONS)

2.1. Postmortem Analysis, Main Result, Some Examples

We assume in this subsection that , is a compactly supported refinable
distribution with a bounded mask m (cf. (1.1)). We further assume, in this
section only, that the dilation is isotropic, i.e.,

s*s=*I, (2.1)

for some *>1.
Note that, as anywhere else in this article, the refinable distribution is

assumed to be compactly supported, and its mask is assumed to be
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bounded. The next example provides an abundance of compactly supported
refinable functions with bounded non-polynomial masks.

Example. Let , be an arbitrary refinable function with a trigonometric
polynomial mask m. Let h be an arbitrary trigonometric polynomial with
h(|){0, | # Rd. Suppose that m(|) h(s*|)�h(|), is not a trigonometric
polynomial. Define

f� =h,� .

Then, f is a compactly supported refinable function with a bounded (non-
polynomial) mask m(|) h(s*|)�h(|).

We define the L2 -regularity parameter :(,) of , to be the maximal
number : for which , # W :$

2 (Rd ) for every :$<:. Note that :(,) may be
negative.

The relevance of T (cf. (1.3)) and H, (cf. (1.7)) to the present context is
due to the following result.

Theorem 2.2. Let , be a compactly supported refinable distribution and
let T be its associated transfer operator. Then there exists an eigenpair
(+, f+) of T such that f+ # H, and such that, with \ :=|+| ,

:(,)=&
log* \

2
.

Also, though we do not formally prove it, our analysis strongly indicates
that f+�0, hence that +>0. In any event, such a result is not extremely
useful if one cannot find the ``correct'' pair (+, f+), and we therefore charac-
terize in the next result the eigenpair of Theorem 2.2. For simplicity, we
first assume that , is in L2 . The characterization utilizes the ideal
I, /L�(Td) which is defined below. There, as elsewhere in this paper,

6

stands for the space of all d-variate (algebraic) polynomials.

Definition 2.3: the ideal I, . Let , be a compactly supported
L2 -function (not necessarily refinable), and assume that ,� (0){0. Let ,*

be its autocorrelation. Let

6,
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be the space of all polynomials reproduced by the shifts of ,*, i.e., p # 6,

if and only if �j # Zd p( j) ,*( } & j) # 6. Then I, is the collection of all
L�(Td )-functions f that are smooth at the origin and satisfy:

(i) f�,� 2 # L�(Td ).

(ii) f is annihilated by 6, in the sense that p(&iD) f (0)=0, for all
p # 6, .

Example: I, under a stability assumption. The shifts of , are stable
if ,� vanishes nowhere (in Rd ). In this case, the first condition in the defini-
tion of I, is vacuous, and hence I, is then the space of all L�(Td)-functions
which vanish at the origin to ``a sufficiently high'' degree. It is worthwhile
noting that the above stability property (of refinable functions) can also be
checked via the corresponding transfer operators (see e.g. [L], [LLS1]
and [S]).

Lemma 1.4 (or, more precisely the remark after (1.6)) can be used to
show that I, is an invariant subspace of the transfer operator T. Our even-
tual proof of Theorem 2.2 is based on inspecting the iterations T k(t,� 2), for
a suitable trigonometric polynomial t. By Lemma 1.8, such iterations must
bring us into H, . At the same, if t vanishes to a high order at the origin,
t,� 2 # I, , and are going to stay in I, , hence to enter H, & I, . In fact, we
have the following result which is proved at the end of Section 2.2.

Theorem 2.4. For a compactly supported refinable L2-function , with
bounded mask and non-zero mean value, the eigenvector f+ of Theorem 2.2
lies in I, & H, .

Moreover, the magnitude \=|+| of the eigenvalue + in Theorem 2.2 is
the spectral radius of the restriction of T to the largest T-invariant sub-
space of I, & H, .

Discussion. The first condition in the definition of I, is intimately
related to the dependence relations satisfied by the shifts of ,*. Indeed, one
can show that f satisfies that first condition if and only if the condition

:
j # Zd

ei% } jp( j) ,*( } & j)=0,

for some % # Rd and p # 6, implies that p(&iD) f (%)=0.
Indeed, various eigenvalues of the restriction of T to H, are there due to

dependence relations among the shifts of ,*, or because of certain polyno-
mials that these shifts reproduce; for example, T may have various eigen-
vectors that are of the form '~ 2, with '= p(D) ,, for a suitable differential
operator p(D). None of these eigenvectors is the one specified in
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Theorem 2.2. Fortunately, the eigenvectors of T* (conceived as an
operator on H*,) that are related to those eigenvalues are supported on the
zero set of ,� 2 when augmented by the origin. This, in fact, is the heuristic
explanation to Theorem 2.4.

Remark. As said before, the underlying assumption in our analysis is
that the refinable function is not given explicitly, and the only readily
available information is its mask. The mask clearly suffices in order to
define and iterate with the transfer operator. However, an attempt to
implement the characterization of Theorem 2.4 (say, via a suitable eigen-
solver) requires more: it requires ``an access'' to the space H, & I, (such as
an algorithm that, given the mask m, constructs a basis for that space). It
is beyond the scope of this paper to discuss these (important) algorithmic
details, and code implementation. The forthcoming article [RST] contains
a comprehensive discussion of that topic (in one and two dimensions). In
brief, the approach there is based on the introduction of a set of projection
operators which project vectors into I, & H, . This, together with the
Arnoldi method as the eigensolver form the backbone of a rebust algorithm
for computing the regularity parameter. One must keep in mind that the
main challenge in the [RST] algorithm is the possible lack of stability.
When the shifts of , are stable, a basis for the space I, & H, can be com-
puted directly from the mask. In fact, [RiS] and [HJ] computed regularity
parameters of several multivariate interpolatory refinable functions (whose
shifts are stable).

Remark. As we have just explained, the space H, contains various
eigenvectors that should be excluded when determining the smoothness of
,. However, the space I, & H, avoids various ``harmless'' eigenvalues, i.e.,
eigenvalues that are smaller in magnitude than the value \ of Theorems 2.2
and 2.4. This means that Theorem 2.4 remains true if we replace I, there
by carefully selected superspaces of it.

Example: B-splines. Only in very rare situations the information
provided in Theorem 2.4 enables one to easily find \. One such situation is
that of the kth-order univariate B-spline. Here, H, is the collection of all
trigonometric polynomials with spectrum in [&k, ..., k]. The function ,*

is now the centered B-spline of order 2k, whose shifts reproduce all polyno-
mials of degree <2k. Since the shifts of , are stable, this implies that the
trigonometric polynomials with 2k-fold zero at the origin and spectrum in
[&k, ..., k] comprise I, & H, . From that, it is easy to conclude that
H, & I, is the 1-dimensional space spanned by f+(|) :=sin2k(|�2). So, it
must be that this function is an eigenvector of the corresponding transfer
operator, whose eigenvalue is our desired \, and that conclusion must hold
true regardless of the choice of the dilation (recall that the B-spline is
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totally refinable, i.e., refinable with respect to all integer dilations). Indeed,
for, say, dyadic dilations, {(|) is cos2k(|�2) and one immediately finds that
\=21&2k, recovering thereby the fact that the L2 -regularity parameter of
the B-spline is k&1�2.

Example: the support function of [0, 3]. In this case :(,)= 1
2 , and

\ of Theorem 2.2 should, thus, be 1
2 . The function , is dyadically refinable

with {(|)=cos2(3|�2). The space H, consists of the trigonometric polyno-
mials with spectrum in [&3, ..., 3]. Already the smaller space H1 of tri-
gonometric polynomials with spectrum in [&2, ..., 2] is invariant under T.
The spectrum of the restriction of T to H1 is (1, 1, &1, 1

2 , &1
2), but all these

eigenvalues are related to polynomial reproduction properties or linear
dependence properties of the shifts of ,* and none is indicative of :(,) (the
appearance of the ``right'' value 1

2 is accidental). The ideal I, contains all
polynomials with double zeros at each of 0, 2?

3 , 4?
3 . One finds that

dim(H, & I,)=1, and that this space is spanned by f (|)=1&cos 3|.
Thus, according to our theory, the pair ( 1

2 , f ) must be an eigenpair of T,
and, indeed, it is.

Example: bivariate box splines. Let 5 be a set of bivariate integer
vectors, such that each pair of them is linearly independent. A bivariate
box spline is the compactly supported function defined by

,� (|)= `
! # 5 \

e&i! } |&1
&i! } | +

n!

, n! # Z+ .

The box spline is piecewise-polynomial of degree n&2, with n :=�! # 5 n! ,
and is dyadically refinable with mask

{(|)= `
! # 5

cos2n!(! } |�2).

The space H, & I, is spanned here by functions of the form

f!$(|) `
! # 5"!$

sin2n!(! } |�2), !$ # 5,

where f! is any trigonometric polynomial with spectrum in [&n! !, ...,n!!].
The eigenpair of Theorem 2.4 can be computed analytically: the eigenvector
is the polynomial

f (|) :=B� 2(!$ } |) `
! # 5"!$

sin2n!(! } |�2),
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with !$ # 5 the direction with the highest multiplicity n!$ (which, of course,
may not be unique), and with B the univariate B-spline of order n!$ (the
description above of the eigenvector holds only if !$ � 2Z2; the eigenvalue
below, nonetheless, is correct even without this assumption). One then
computes the critical eigenvalue to be

\=21+2n!$&2n.

By Theorem 2.2, the regularity parameter of , is then

:(,)=n&n!$&1�2.

Note that it is well-known that , # C n&n!$&2"Cn&n!$&1.

2.2. Finding the Regularity Parameter by Iterations

While it seems hard to find the pair (+, f+) analytically, one can instead
try to use the power method for estimating \=|+| , i.e., for a generic
f # H, & I, , we will have

\= lim
k � �

&T kf &1�k. (2.5)

Moreover, we do not have to start the iterations with f # I, & H, : it suf-
fices to choose a suitable f # I, , and to let the iterations bring us into H, .

We now embark on the actual (theoretical) computations of the
regularity parameter. For that, we first make the following definition:

Definition 2.6. Let U be a finite collection of non-negative tri-
gonometric polynomials. We say that U is a complete system of order l if
�u # U u has an isolated zero of order 2l at the origin.

Now, with * as in (2.1), let Vk , k=0, 1, ... be the rings

Vk=[| # Rd : *k&1K�|||�*kK],

with K some positive number. It is well-known that , lies in the space W :
2

if and only if the sequence

k [ *:k &,� &L2(Vk)

is square-summable. From that one immediately concludes that the
regularity parameter of , is

:(,)=&lim sup
k � �

log* (&,� &L2(Vk))
k

. (2.7)
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Lemma 1.4 tells us how to compute the norms in (2.7): assuming , # L2 ,
one may choose t there to be the 2?-periodization of the support function
of V0 (for a small enough K), and conclude from the lemma that, given any
:>0,

&,� &L2(Vk)=O(*&:k) � &T k(t,� 2)&1�2
L1(Td )=O(*&:k)

(as k � �).
This allows us, in our search for :(,), to iterate with T, starting with the

initial seed t,� 2. A possible snag here is that the selected t is not a polyno-
mial, and we do not, thus, benefit from Lemma 1.8, i.e., the iterations do
not stay inside a well-prescribed finite dimensional space. For that reason,
we approximate the support function of V0 by non-negative trigonometric
polynomials, which is exactly the role played by systems of order l that
were introduced before. Indeed, the following is true (and known; it is
related to the very basic definition of smoothness spaces in terms of finite
differencing):

Lemma 2.8. Let U be a complete system of order l, and let , # L2(R
d).

Let :(U, ,) be the supremum of all : for which, for every u # U, the sequence

k [ *:k &,� 2 Dku&1�2
L1(Rd )

is bounded. Let :(,) be a regularity parameter of ,. Then either :(,)=:(U, ,),
or :(,)�:(U, ,)�l.

We prove this elementary lemma in Section 4. Here, we combine this
lemma with Lemma 1.4 (with |t|2 there being our u here), to conclude:

Theorem 2.9. Let , be a compactly supported L2 -function with bounded
mask m and a transfer operator T. Let U be a complete system of order l.
Set

:(u, ,) :=&lim sup
k � �

log* &T k(u,� 2)&1�2
L1(Td )

k
,

and :(U, ,) :=minu # U :(u, ,). Then the regularity parameter :(,) of , is
�:(U, ,). Moreover, :(,)=:(U, ,), in case :(U, ,)<l.

Theorem 2.2 (for a function ,) now easily follows from the above
theorem when combined with Lemma 1.8.
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We stated Theorem 2.9 in terms of the transfer operator iterations. In
view of Lemma 1.4, we could also state it in terms of the subdivision itera-
tions:

&t,� T*k
m 1&1�2

L2(Td ) , t :=- u,

as is discussed below. In any event, the function ,� 2 that is involved in the
above estimation may not be known, hence may be wished to be avoided.
Clearly, if f is any function, then

| f |�,� O &tf T*k
m 1&1�2

L2(Td )�&t,� T*k
m 1&1�2

L2(Td) ,

| f |�,� O &tf T*k
m 1&1�2

L2(Td )�&t,� T*k
m 1&1�2

L2(Td) .

This allows us to obtain upper bounds and lower bounds on the regularity
parameter by iterating with suitable initial seeds f. We switch now back to
the transfer operator language, and set, for any non-negative function g:

:g(u, ,) := &lim sup
k � �

log* &T k(ug)&1�2
L1(Td )

k
.

The above discussion when combined with Theorem 2.9 implies the follow-
ing result. Under the additional assumption that m is a polynomial, parts
(c, d) of that result below are due to Jia [J1], and Cohen, Gro� chenig,
Villemoes, [CGV].

Corollary 2.10. Let , be a compactly supported L2 -function with
bounded mask m, associated with a transfer operator T. Let U be a complete
system of order l, and let g be some non-negative L�(Td)-function. Let
:g(u, ,) be defined as above. Then:

(a) If ,� 2�const g, then :(,)�:g(U, ,) :=minu # U :g(u, ,).

(b) If ,� 2�const g, and :g(U, ,)<l, then :(,)�:g(U, ,).

(c) We always have :(,)�:1(U, ,).

(d) If the shifts of , are stable, and :1(U, ,)<l, then :(,)=:1(U, ,).

Proof. From the discussion preceding the corollary, we conclude that,
under the assumption in (a), :g(U, ,)�:(U, ,), hence (a) follows form
Theorem 2.9, and (b) is proved similarly. Item (c) is obtained by observing
that ,� 2 is a polynomial (since we assume , to have compact support) hence
bounded, and so (a) is certainly satisfied for the choice g=1. Finally, the
stability assumption in (d) tells us that ,� 2�const, so under this assump-
tion, we can apply (b) with respect to g=1. K
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Parts (c, d) of Corollary 2.10 suggest a simpler lower bound on the
regularity parameter :(,), and show that this bound is sharp under a
stability assumption. It must be understood that, in the absence of stability,
these lower bounds, not only that may not be sharp, but may simply be
pitiful. This observation is implicit in one of our previous examples and is
generalized in the next one.

Example: iterating with initial seeds that are not divisible by ,� 2

may be a waste of time. Let ,0 be any univariate dyadically refinable
function with mask m0 and set ,n+1=,n+,n( } +1)+,n( } +2),
n=1, 2, 3, ... . Then ,n is refinable with mask

mn(|)=\e3i|+1
ei|+1 +

n

m0(|).

Let T n* be the subdivision operator associated with |mn |2. One then
observes that for j=1, 2, and with $j the linear functional of point-evalua-
tion at 2?j�3

T n* $ j=\4n }m0 \2?
3& j

3 +}
2

+ $3& j .

This implies that +n :=4n |m0(
2?
3 ) m0(

4?
3 )| is an eigenvalue of T n* with eigenvec-

tor $ :=|m0(
2?
3 )| $1+|m0( 4?

3 )| $2 , hence also that +n is an eigenvalue of Tn .
Assuming that m0(2? j

3){0, j=1, 2, we may choose n so that to make +n

as large as we wish (hence, in particular, to ensure that it is >1). Then,
if we iterate with Tn with the initial seed f satisfying ( f, $){0, the itera-
tions will not avoid the eigenvalue +n , and the smoothness estimates so
obtained may not even grant us the conclusion that ,n # L2 . Note that ,n

here is (at least) as smooth as ,0 is, and ,0 can be chosen to be as smooth
as one wishes.

Specifically, if the shifts of the original , were known to be stable, the
iterations with T0 may start with sin2l(|�2), for a sufficiently large l. This
initial seed is faulty if we iterate with T1 . Instead, we may take sin2l(3|�2);
a more efficient choice is sin2(3|�2) sin2l&2(|�2).

The example incidentally shows that the spectral radius of transfer
operators of refinable compactly supported L2-functions can be as large as
one wishes.

Remark. The above example shows also that the convergence of
cascade algorithm associated with a given mask m is not implied, in
general, by the smoothness of the underlying refinable function. Indeed, in
the above we have generated smooth refinable functions whose transfer
operator have arbitrarily large spectral radius. At the same time, if the
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mask is a polynomial, the corresponding cascade algorithm induced by the
mask converges in the L2 -norm only if all the eigenvalues with trignometric
polynomial eigenvectors of the transfer operator are in the closed unit disc:
(cf. e.g., [LLS2, S]; the result, by the way, does not require any special
assumption on the dilation matrix).

The subdivision approach. The prevailing system U in the subdivision
literature is U=(uj)

d
j=1 , where

uj (|) :=sin2l(|j �2).

This system is certainly complete of order l. Note that each uj is of the
form |t j |

2, with t j(|)=(e i|j&1)l, which is the Fourier series of the l-fold
forward difference in the jth direction. Thus, the middle expression in
Lemma 1.4 (for the current choice of t and with ' :=,) tells us that we can
compute :(u, ,) (hence, eventually, the regularity parameter) by, starting
with f =1, iterating sufficiently many times with the subdivision operator
T*m , and then applying an l-fold difference to the so obtained function.
This is, indeed, what the subdivision literature mostly suggests in this
regard, with one critical difference: one still needs to mask the resulting
expression against ,� in order to obtain the correct expression &t,� T*k

m 1& (cf.
Lemma 1.4). While, as we observed above, this can be sometimes avoided,
our results inflict a blow to this ``plain'' subdivision approach: for a com-
pactly supported ,, ,� 2 is a polynomial, while ,� may not be so (unless we
are in one dimension)! The alternative expression, &T k( |t| 2 ,� 2)&, avoids
that trap.

We presented in the above discussion one example of a complete system
of order l. Another example is the singleton

u(|)=\ :
d

j=1

sin2 (|j �2)+
l

.

This function was used in [CGV] and [RiS].

We conclude this section with a proof of Theorem 2.4.

Proof of Theorem 2.4. We first assume that I, is T-invariant, and use
that to prove the theorem. Then, we prove this invariance assertion.

Let U=[u] be a complete system of order l (made of the singleton
[u]). By choosing a sufficiently large l, we can ensure that u,� 2 # I, . Since
I, is T-invariant, Lemma 1.8 implies that T k(u,� 2) lies in H, & I, , for all
sufficiently large k. Let F be the largest T-invariant subspace of I, & H, ,
and let \ be the spectral radius of the restriction of T to F. Since almost
all the orbit of u,� 2 lies in H, & I, , it follows that u,� 2= f1+ f2 , with
f1 # H, & I, , and f2 T-nilpotent. From that one concludes, with :(u, ,) as
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in Theorem 2.9, that :(u, ,) must coincide with &
log * \1

2 , with \1 the spec-
tral radius of the restriction of T to F1 , the latter being the smallest
T-invariant space that contains f1 . Since F1 /F, we have that \1�\, hence
that :(u, ,)�&

log * \
2 . Finally, Theorem 2.9 tells us that :(,)�:(u, ,),

hence we conclude that :(,)�&
log * \

2 .
In order to prove the converse inequality, we let (+, f ) be a dominant

eigenvector of the restriction of T to F, with F as above. Then, \=|+|. Let
l be the minimal integer which is �:(,). Since l&:(,)<1, and since we
also assume that ,� (0){0, we conclude (cf. [R3, J2]) that the shifts of ,
provide approximation order l, and standard approximation theory techni-
ques can then be used to show that 6, contains all polynomials of degree
<2l, hence that all functions in I, (including the above f ) has a zero of
order 2l at the origin. Let u(|) :=(�d

j=1 sin2(|j �2))l, and note that [u] is
complete of order l. The discussion so far yields the factorization

| f |=tu,� 2,

with t bounded and non-negative. Choosing g :=t,� 2 in Corollary 2.10 we
get from (b) there that :(,)�:g(u, ,). However, one notes that

T k(ug)=T k( | f | )�|T k( f )|=\k | f |,

hence that :g(u, ,)�&
log * \

2 , proving thereby the the desired converse
inequality.

It remains to prove that I, is T-invariant. Let f # I, . We then write
f =t,� 2, t # L�(Td). Lemma 1.4 then identifies T(t,� 2) as the 2?-periodiza-
tion of |,� |2 Dt. Periodizing the inequality

|,� |2 Dt�const |,� |2,

we obtain that Tf�const ,� 2, hence Tf satisfies the first condition in the
definition of I, .

As to the second condition, it suffices to prove that, for each p # 6, , and
for each j # 2?Zd,

p(&iD)( |,� |2 Dt)( j)=0.

For j{0, this easily follows from the fact that, since �n # Zd p(n) ,*( } &n)
# 6, we must have that q(&iD)( |,� |2)( j)=0, for every q obtained from p
by any differentiation (cf. e.g., [BR]). At the origin, we know that
p(&iD) t(0)=0, by the definition of I, . Furthermore, the fact that 6, is
invariant under differentiations (cf. [BR]), when combined with the
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refinability assumption on , easily implies that 6, is invariant under dila-
tions by s. Consequently, p(&iD)(Dt)(0)=0, as well. This completes the
proof that Tf # I, , hence that I, is T-invariant. K

2.3. Factorization: Regularity of Refinable Distributions

When the negative regularity parameter of a compactly supported dis-
tribution is sought for, we do not need the ``damping'' effect of the system
U. We simply should convolve , with (say, compactly supported) mollifier
&, and examine the asymptotic growth of the L2 -norm of &h V ,, with &h the
normalized h-dilate of &.

Definition. Let & be a compactly supported function. We say that & is
of order &l if &̂(0){0, and |&̂|2 has a zero of order 2l at �, i.e.,

|&̂(|)|2=O( |||&2l)

for large |.

Lemma 2.11. Let ,{0 be a tempered distribution whose Fourier trans-
form is locally square integrable ( for example, a compactly supported dis-
tribution). Let & be a compactly supported function of order &l. Let ;(&, ,)
be the supremum of all : for which

k [ *:k &,� Dk&̂&L2(Rd )

is bounded. Then ;(&, ,)�0, and the following is true:

(a) If &l<;(&, ,)<0, then :(,)=;(&, ,).

(b) If ;(&, ,)�&l, then ;(&, ,)�:(,)�&l.

(c) ;(&, ,)=0 if and only if :(,)�0.

The above lemma, that we prove in Section 4, allows us to invoke
Lemma 1.4 once again, only that this time we take there t=1, and & as
above. The initial seed u,� 2 from the function case is replaced by the initial
seed '~ 2, and Lemma 1.8 grants us that the iterations will enter H, , thereby
proving Theorem 2.2 for the distribution case.

However, the initial seed '~ 2 is quite obscure, especially since, in contrast
with ,� 2 of the function case, it may not be an eigenvector of T. We can still
replace the initial seed '~ 2 by other seeds in order to get upper�lower bound
estimates on the regularity parameter. The following summerizes some of
the present counterparts of the theorems proved in the case of a function
,. The definition of pre-stability follows the corollary.
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Corollary 2.12. Let , be a compactly supported refinable distribution
with bounded mask m and transfer operator T. Let & be of order &l, and
' :=, V & # L2 .

(a) Define

;(&, ,) :=&lim sup
k � �

log* &T k('~ 2)&1�2
L1(Td )

k
.

Then :(,)�;(&, ,). Moreover, &l<:(,)<0 if and only if &l<;(&, ,)<0
and in that situation :(,)=;(&, ,).

(b) Set

;1(,) := &lim sup
k � �

log* &T k1&1�2
L1(Td )

k
.

Then :(,)�;1(,).

(c) If the shifts of , are pre-stable, and ;1(,)<0, then :(,)=;1(,).

Definition: pre-stability. We say that the shifts of the tempered dis-
tribution , are pre-stable if there exists a compactly supported & such that
' :=, V & is an L2 -function and has stable shifts, i.e., such that '~ is
bounded above and below by positive constants.

For a compactly supported distribution ,, as here, pre-stability is equiv-
alent to ,� having no (real) 2?-periodic zeros. For an L2 -function , (com-
pactly supported or not), the notion coincides with the notion of stability.
We note that, if the shifts of , are pre-stable, and if & is any compactly sup-
ported function for which &̂(0){0, then, for all sufficiently large k, ,� Dk&̂
does not have 2?-periodic zeros. This fact (that follows from the continuity
of ,� with the aid of an elementary compactness argument) is required in
the proof of (c) in Corollary 2.12.

The connection of these results to the existing literature is as follows:
suppose that , is a refinable function that can be factored into ,=,1 V ,2 .
Suppose that the smoothness of ,1 is known (e.g., ,1 is a B-spline), and
that ,2 lacks any smoothness, i.e., is an ``honest'' distribution. Since con-
volution with a B-spline of order r increases the smoothness exponent of
the refinable element exactly by r, one may concentrate on analysing the
(negative) smoothness parameter of ,2 , an analysis that does not require
the ``damping'' factor u (of Lemma 2.8). If the shifts of , are known to be
stable, then, a fortiori, the shifts of ,2 are pre-stable, hence we can simply
iterate with the initial seed 1 (the radius \ is then the spectral radius of the
restriction of T to H,).
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There are four major advantages to the factorization approach. First, the
mask of ,2 is smaller than the mask of ,. Second, the shifts of ,2 can be
pre-stable, while the shifts of , are not stable (something that is expected
to happen especially in multivariate setups). Third, the use of the addi-
tional polynomial u can be avoided (in fact, damping factors were invented
in order to circumvent the difficulties in implementing the idea of factoriza-
tion). Fourth, the factorization diminishes significantly the suppression of
the critical eigenvalue by larger irrelevant eigenvalues. However (and
unfortunately) factorization does not work in more than one variable: first,
in more than one variable there is no guarantee of any simple factorization.
Second, one cannot estimate sharply the smoothness exponent of , from
those of its factors.

Trivial factorizations. We tie together various aspects of the analysis
presented in this subsection, by exploring a trivial type of factorization. We
assume here, for simplicity, that the dilation is dyadic.

To recall, one of the objectives of factorizations was to reduce the
smoothness of the underlying refinable function, so that the use of the
damping factor u can be avoided, or its order can be reduced.

Suppose, therefore, that we let p(D) be a homogeneous differential
operator with constant coefficients of degree k. If we can compute the
smoothness of p(D) ,, then, by varying p (and k, if necessary), we will
eventually identify correctly the smoothness of ,. At the same time, if , is
refinable with mask m then p(D) , is refinable with mask mk :=2km. This,
seemingly, may suggest that results like (b) and (c) of Corollary 2.12, that
were marked as ``useful for estimating negative smoothness parameters,''
should be useful for estimating positive smoothness parameters. After all,
we have just shown that, up to a multiplicative constant, the mask m is
also the mask of a non-smooth function. Of course, this is a groundless
hope: if , # L2(Rd), the transfer operator has (1, ,� 2) as an eigenpair, and
iterating with the initial seed 1 will not avoid (in general) that eigenpair.

Indeed, Corollary 2.12 provides sharp estimates on the smoothness of
p(D) , only if the shifts of that distribution are pre-stable. However, these
shifts are never pre-stable (if , # L2(R

d), and not a mere distribution): the
Fourier transform of p(D) , is guaranteed to vanish on 2?Zd. This forces
the initial seed '~ 2 of Corollary 2.12 to vanish at the origin, and we should
then take initial seeds that vanish at the origin, i.e., that we should use
damping factors.

In summary, the current discussion shows that a comprehensive under-
standing of the connection between negative smoothness parameters of
refinable distributions and iterations with their transfer operator, leads
naturally to the use of damping factors for the analysis of positive smooth-
ness parameters.
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2.4. Regularity of Univariate Refinable Functions

Let , be a compactly supported univariate function. Theorem 3.7 of
[R1] then allows us to write , as the convolution ,=,1 V ,2 V ,3 , with ,1

a measure finitely supported on the integers, with ,2 a suitable B-spline,
and with ,3 a function�distribution of compact support whose shifts are
linearly independent (a property which is by far stronger than pre-stability)
on the one hand, and reproduce no polynomials on the other hand. If , is
refinable (with respect to dilation by the integer s) then it is easy to prove
that ,3 is refinable in the sense that

,� 3(s } )=m3 ,� 3 ,

for some 2?-periodic m3 . Moreover, the linear independence assumption on
the shifts of ,3 then implies that m3 above must be a polynomial (cf. [BAR,
JM, BDR]). From that one easily concludes that, denoting by m the refine-
ment mask of ,, we have a relation of the form

m=
t(s } )

t
m2m3 ,

for some polynomial t (which is the Fourier transform of the measure ,1).
This approach, indeed, was already put into good use in [R2], in the
analysis of the stability and linear independence properties of univariate
refinable functions.

In the context of regularity, the above factorization is truly ideal: if we
can find the mask m3 of ,3 , and if we know the order of the B-spline ,2 ,
then, in order to determine :(,) we only need to find :(,3), and that,
thanks to Corollary 2.12 (parts (b, c)), can be found by iterating with the
trivial initial seed f =1.

The last section of [R2] contains an algorithm that, based on the fac-
torization of m into linear factors, finds the mask m2m3 (from which the
extraction of m3 is immediate).

3. SMOOTHNESS OF REFINABLE FUNCTIONS:
THE GENERAL TREATMENT

In contrast with the flavour of the previous section, where the fine details
and wrinkles of the regularity problem were discussed, but under simplify-
ing assumptions, we strive in this section at generality and brevity.

Another important difference will be noticed in the presentation: in
the previous section, we targeted persistently the ``magic'' eigenpair of
Theorem 2.2. Even if we decided to maintain here the compact support
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assumption from the previous section, results in terms of eigenpairs of the
transfer operator (though possible) turn out to be too weak in the present
context: they can only be used to characterize the common smoothness of
all the refinable functions in the vector 8. In contrast, we would like to
characterize separately the smoothness of each individual , # 8.

In the previous section, we made the point that the regularity of , can
be studied by either iterating with the subdivision operator of m, or with
the transfer operator of { :=|m|2. The choice of playing either the subdivi-
sion card or the transfer operator card exists here as well. However, the
two operators are, though still closely related, much different in nature. For
example, the subdivision operator acts on vectors while the transfer
operator acts on matrices. Since the latter approach is the more general
one, we derive the results using the transfer operator approach. Near the
end of this section, we discuss briefly the alternative subdivision approach.
Our setup here includes the FSI one as a special case.

Let G0 be any n_n$ matrix with L1(Rd)-entries. We would like to study,
one by one, the decay rates at � of the entries of G0 (much the same as
we studied the decay rate of |,� |2 of the PSI case). The matrix G0 is
assumed to be refinable in the sense that there exist two square matrices M
and N of orders n$ and n respectively, with bounded measurable 2?-peri-
odic entries such that, almost everywhere,

D&1G0=NG0M*. (3.1)

Here, s is any (but fixed) dilation matrix.
The motivation behind the above setup is the following:

3.2. The FSI setup. An important special case is as follows: suppose
8/L2(Rd) is a finite vector of L2(R

d)-functions that are refinable in the
sense that

D&18� =M8� .

for some square matrix M whose entries are 2?-periodic and bounded, and
whose rows and columns are indexed by 8. Then, defining

G0 :=8� 8� *,

we obtain that

D&1G0=MG0M*.

In the FSI case the entries of G0 of interest are the diagonal ones: |,� | 2,
, # 8.
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Before we embark on further technical details, we would like to provide
the reader with the gist of this section. Given G0 as above, we assume that
sonic entry (G0) ij of it is of the form |,� |2, for some function�distribution ,,
and would like to study the smoothness of that ,, in terms of the matrices
N and M (in the FSI case, thus, the entries of interest are the diagonal
ones). To that end, we first associate the pair (M, N) with a suitable
transfer operator T. The role of the function ,� 2 is now played by the
Gramian matrix

G := :
j # 2?Zd

G0( } + j). (3.3)

As in the scalar case, G is a 1-eigenvector of T.
Our first result in this direction, Proposition 3.9, allows us to to charac-

terize :(,) (with |,� |2 being the (i, j)-entry of G0) as follows. Defining

u(|) :=\ :
d

j=1

sin2(|j �2)+
l

,

and denoting by f k
ij the (i, j)-entry of T k(uG), the proposition yields that,

for an istropic dilation and provided that l is sufficiently large,

:(,)=&lim sup
k � �

log* & f k
ij&

1�2
L1(Td )

k
,

much in the same spirit of the PSI case. For the special FSI case, this result
is restated in Theorem 3.15 (as part (a) there).

The implementation of the results that were alluded to above relies on
the ability to compute the matrix G. Parts (b, c) in Theorem 3.15 study the
alternative of starting the iterations with uI (instead of uG). It is showed
there that the smoothness estimate obtained in this way always bounds
below (say, if , is compactly supported) the sharp parameter :(,), and that
those alternative iterations recover completely :(,) under a stability
assumption on the shifts of (the vector) 8. Finally, Theorem 3.17 is an
analog of Theorem 3.15 where negative smoothness parameters are studied.

Let H be the Hilbert space of all n_n$ L2(Td)-valued matrices, equipped
with the usual inner product, i.e.,

& f &2
H=:

i, j

& f i, j&2
L2(Td ) .
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We also need here the space H$ of all n_n$ L2(Rd)-valued matrices. The
transfer operator T :=TM, N is now defined by

T: H � H: f [ D \ :
# # 1

(NfM*)( } +s*&1#)+ ,

and its adjoint is the operator

T*: H � H: f [ |det s| N*(D&1f ) M.

Checking that, indeed, T* is the adjoint of T requires the following identity
of independent use in the sequel:

(NgM*, f ) H=(g, N*fM) H , \f, g # H. (3.4)

The same identity, of course, holds in H$:

(NgM*, f ) H$=(g, N*fM) H$ , \f, g # H$. (3.5)

Let u be now any scalar function in L�(Td), and let f # H. Then, due to
the 2?-periodicity of u and f, we may use (3.5), invoke k times the
refinability of G0 and obtain

(T k(uG), f ) H=(uG0 , T*kf ) H$=|det s| k :
i, j

|
Rd

u D&k(G0(i, j) fi, j)

=:
i, j

|
R d

(Dku) G0(i, j) f i, j , (3.6)

with G0(i, j) being the (i, j)-entry of G0 . Note that, analogously to (1.6),
the identity (3.6) identifies T k(uG) with the 2?-periodization of (Dku) G0 :

T k(uG)= :
j # 2?Zd

((Dku) G0)( } + j). (3.7)

In particular, choosing 1ij to be the matrix whose (i, j)-entry is 1 and the
others are 0, and letting f0 be any scalar function in L2(Td), we arrive at
the following generalization of (1.6):

(T k(uG), f01ij) H=|
Rd

G0(i, j) f0 Dku. (3.8)

Proposition 3.9. Assume that some (i, j)-entry, G0(i, j), of G0 is of the
form |,� |2 for some L2 -function ,. Set, for every integer k, and some bounded u,

ak(u, ,) :=|
Rd

|,� | 2 Dku.
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Then, for every k,

ak(u, ,)=(T k(uG), 1ij) H ,

with 1ij a matrix whose (i, j)-entry is 1 and whose other entries are 0.

Discussion. In the FSI case, as presented before, the functions |,� |2,
, # 8, comprise the diagonal of G0 . Thus, in that case the previous proposi-
tion says that the matrix T k(uG) has diagonal entries whose integrals
measure the smoothness of the corresponding ,'s, provided of course that
the numbers (ak(u, ,))k are suitable for measuring that smoothness. The
appropriateness of the sequence (ak(u, ,))k for measuring the smoothness
of , is discussed in the next section.

In the PSI case, and under a compact support assumption, we observed
that the transfer operator iterations enter a certain finite dimensional sub-
space. This observation extends to the current situation:

Corollary 3.10. If some entry G0(i, j) of G0 is of the form |,� |2 for a
compactly supported ,, then, given any trigonometric polynomial u, the
(i, j)-entry of T k(uG) lies in H, , for all sufficiently large k.

Proof. Choose an exponential e% , % # Zd, for f0 in (3.8), and repeat the
argument used in Lemma 1.8 (with u here being being q̂ there, and with &
there taken to be the Dirac $). K

The result can be easily applied to show that in the FSI setup, if 8 is
compactly supported, then, for any given polynomial u, the iterations
T k(uG) will enter a finite dimensional space of H. However, this observa-
tion does not seem to be as useful as its PSI counterpart is and we will not
pursue it further.

Even though the matrix G is an eigenvector of the transfer operator
(with eigenvalue 1), that matrix is, quite likely, very hard to compute.
Therefore, it is useful to seek smoothness estimates that do not exploit this
matrix. One should be warned that in general there might be different
matrices G0 that satisfy the refinability assumption, and the (i, j)-entry of
a solution G0 may represent a function of different smoothness properties
than the (i, j)-entry of another solution. Thus, an attempt to characterize
the decay of the (i, j)-entry of G0 , without information on the particular G0

chosen, may doom to fail.
In the sequel we gradually impose additional conditions on M, N, and

G0 . First, we assume here and hereafter that:
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3.11. Assumptions and conventions.

(a) M=N (in particular, that n=n$).

(b) G(|) is symmetric non-negative definite for almost every | # Rd.

(c) Some diagonal entry G0(i, i) of G0 is of the form |,� |2, for some
, # L2 .

Here, we note that the condition (c) above is satisfied for the FSI case.
Adopting these assumptions, we set

4+(|) (4&(|)) (3.12)

for the largest (smallest) eigenvalue of G(|).
Note that the assumed conditions are certainly satisfied for the case of

primary interest, i.e., the FSI case as discussed in (3.2).
Our approach for deriving Gramian-free estimates, is based on the next

lemma:

Lemma 3.13. Adopting assumptions (3.11), we have for any non-negative
2?-periodic (bounded ) u,

(T k(u4&I ), 1ii) H�(T k(uG), 1ii) H�(T k(u4+ I ), 1ii) H .

Proof. Let A be any of the matrices G, 4+I, 4&I. By (3.4),

(T k(uA), 1ii) H=(uA, T*k1ii) H=|det s|k (uMk AMk* , 1ii) H ,

with

Mk :=(D&(k&1)M) } } } (D&1M) M.

Therefore, with mi (k) the ith row of Mk , the integrand in the above inner
product is

|det s|k uA(mi (k)),

with A(mi (k)) the (pointwise) value of the quadratic form A at the vector
mi (k). By our assumption here, the inequalities

4&I(m i (k))�G(mi (k))�4+I(m i (k))

are valid pointwise almost everywhere, whence the result. K

The function 4+ is essentially bounded if and only if each of the entries
of G is so.
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Corollary 3.14. If all the entries of G are bounded, and if we adopt the
assumptions in (3.11), then for every non-negative u,

ak(u, ,)�const(T k(uI ), 1ii) .

Here, ak(u, ,) is as in Proposition 3.9.

In the FSI case, the boundedness of the entries of G is implied by a mild
decay assumption on 8. E.g. if each , # 8 decays at � at a rate &d&=,
for some =>0.

We say that the shifts of 8 are stable if the functions 4+ and 1�4& of
the Gramian of G are essentially bounded (this is certainly a non-standard
definition of stability, but is equivalent to the standard definition; cf. [JM,
BDR, RS]. See also [S] where stability of refinable 8's is characterized in
terms of the transfer operator). Under such a stability assumption, we can
invoke the last result to conclude (for example) the following one, in which
we use, for any given 2?-periodic bounded u, the notation

ak(u, ,)

for the L1(Td)-norm of the (,, ,)-entry of T k(uG), and

ak
I (u, ,)

for the L1(Td)-norm of the (,, ,)-entry of T k(uI ). The proof of the result
invokes Lemma 3.13 and Lemma 2.8.

Theorem 3.15. Let 8/L2(Rd) be a refinable vector with bounded mask
M, and with Gramian G. Assume that the dilation is isotropic. Let T be the
associated transfer operator, and let U be a complete system of order l. Set

:(U, ,) :=&max
u # U

lim sup
k � �

log* ak(u, ,)
2k

,

:I (U, ,) :=&max
u # U

lim sup
k � �

log* ak
I (u, ,)

2k
.

Then:

(a) If :(U, ,)�l, so is the regularity parameter :(,). Otherwise,
:(,)=:(U, ,).

(b) If the entries of G are bounded, then :I (U, ,)�:(,).

(c) If the shifts of 8 are stable, then :(U, ,)=:I (U, ,).
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The subdivision approach. The subdivision operator provides an alter-
native route for computing the matrices T k(uI ), and�or T k(uG), in a way
that the computation is significantly simplified.

First, we define that operator. Let 8 be a refinable vector with bounded
mask M. Let H0 be the Hilbert space L2(Td_8). The subdivision operator
T*M is then defined as

T*M : H0 � H0 : g [ - |det s| M* D&1g.

The relation between T*M and the adjoint T* of the transfer operator T is
neat:

T*(g1g2*)=(T*Mg1)(T*Mg2)*,

which is the analog of the relation T* | f |2=|T*m f |2 of the PSI case.
Now, let 1, # C8 be the vector whose ,-entry is 1 and other entries 0.

Then, the number ak(u, ,) from Theorem 3.15 can be written as

ak(u, ,)=(T k(uG), 1, 1*,)H=(uG, T*k(1,1*,)) H=|
Td

uG(T*k
M 1,),

with G(v) the (pointwise) value of the quadratic form G at v, i.e.,

G(v)=v*Gv.

Thus, we may, in lieu of iterating with T k(uG), compute the vector T*k
M 1, ,

and then apply to that vector the quadratic form uG, and compute the
integral. The computational saving is huge; further, the guaranteed numeri-
cal instability of the process (due to the fact that the quadratic form uG
must suppress the ``wrong'' eigenvectors of T*) is postponed to the last
step.

We finally discuss briefly the regularity of refinable distributions. The
approach, in principle, is identical to that used in the PSI case: we take the
refinable 8 and convolve it with a compactly supported scalar & to obtain
8 :=& V 8/L2 . We then let G& be the Gramian of 8. By an argument
analogous to (3.6) we obtain the following proposition:

Proposition 3.16. Let 8 be a refinable vector of distributions with
bounded mask M, and assume that the Fourier transform of each of these dis-
tributions is locally square integrable. For each , # 8, let f, be the
8_8-matrix whose (,, ,)-entry is 1 and its other entries are 0. Let & be a
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compactly supported distribution, so that, with &h the h-dilate of &,
&h V 8/L2 , all h. Let G& be the Gramian of & V 8. Then

bk(&, ,) :=|
Rd

|,� |2 Dk( |&̂|2)=(T k(G&), f,) H .

We have already discussed in Section 2.3 the relevance of the numbers
(bk(&, ,)k to the identification of the smoothness of ,. In the present context,
the most important conclusions seem to be those that avoid the computation
of G& . The next theorem is the main result in this direction.

Theorem 3.17. Let 8 be a refinable vector of tempered distributions in
Rd, with bounded mask M and transfer operator T. Assume that ,� is locally
in L2 , for every , # 8. For each , # 8, let bk

I (,) be the L1(Td)-norm of
(,, ,)-diagonal entry of T k(I ). Assume that the dilation is isotropic (i.e.,
ss*=*2I ), and set

;I (,) := &lim sup
k � �

log* bk
I (,)

2k
.

Then,

(a) If there exists a compactly supported function & of some order
&l�0 such that the Gramian G& of & V 8 is well-defined and its entries are
essentially bounded, then :(,)�;I (,).

(b) If, in addition, the shifts of & V 8 are stable, and &l<;I (,)<0,
then :(,)=;I (,).

Proof. Let 4+ be the eigenvalue function of G& . Since we assume that
the entries of G& are bounded, we have that 4+ # L�(Td), and we obtain
from Lemma 3.13 and Proposition 3.16, in the notations of Proposi-
tion 3.16, that

bk(&, ,)=(T k(G&), f,)H�c(T k(I ), f,) H=cbk
I (,).

From that, it follows that ;I (,)�;(&, ,), with ;(&, ,) as in Lemma 2.11,
and, hence, by Lemma 2.11, ;I (,)�;(&, ,)�:(,), which proves (a).

Assuming further that & V 8 has stable shifts, we conclude from
Lemma 3.13 that, with 4& the eigenvalue function of G& , and for some
other positive constant c,

bk(&, ,)=(T k(G&), f,)H�c(T k(I ), f,) H=cbk
I (,).

This, together with the argument in the previous paragraph, shows that
;I (,)=;(&, ,). Assertion (b) then follows from Lemma 2.11. K
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Discussion. The formulation of the conditions in the last theorem in
terms of properties of the mollifier & was done for sake of convenience and
generality. It is not hard to rephrase those assumptions in terms of intrinsic
properties of 8. For example, for as long as 8 are distributions of finite
order, we can always find a sufficiently smooth & to ensure that & V 8/L2 .
The additional assumption in (a) above, i.e., that G& has bounded entries,
is actually a condition on 8; that boundedness is obtained, e.g., if each ,
satisfies some mild decay condition as �. In particular, no reference to &
is required in (a) above if we know that 8 is compactly supported.

Similarly, the stability assumption of (b) can also be connected directly
to properties of 8. For example, if 8 is compactly supported (and in many
other cases as well), the stability of the shifts of & V 8 amounts to
pre-stability of the shifts of 8, i.e., the linear independence, for every fixed
% # Rd, of the sequences

y,, % : Zd � C: j [ ,� (%+2?j), , # 8.

Indeed, under this assumption, it is easy to construct a compactly sup-
ported & of arbitrarily small order &l such that & V 8 has stable shifts: one
only needs to ensure that &̂ does not vanish on a sufficiently large ball cen-
tered at the origin, and that & is sufficiently smooth. This means that we
have, e.g., the following:

Corollary 3.18. Let 8 be a compactly supported refinable vector of
tempered distributions on Rd, with bounded mask M and transfer operator T.
For each , # 8, let bk

I (,) be the L1(Td)-norm of (,, ,)-diagonal entry of
T k(I ). Assume that the dilation is isotropic (i.e., ss*=*2I ), and set

;I (,) := &lim sup
k � �

log* bk
I (,)

2k
.

Then,

(a) :(,)�;I (,).

(b) If, ;I (,)<0, and, in addition, the shifts of 8 are pre-stable then
:(,)=;I (,).

Final discussion. Note that we were reluctant to translate the results here
to assertions about the spectral radius of the transfer operator restricted to
certain spaces. We could still identify, in the compact support case, a finite
dimensional subspace H8 /L2(Td_8) of trigonometric polynomials, and
an eigenpair (\, f\) so that, with :(8) :=&

log * \
2 , and analogously to

Theorem 2.2, each , # 8 lies in W :
2(Rd) for every :<:(8). The converse,

however, does not hold: if :>:(8), one can only conclude that some , # 8

218 RON AND SHEN



does not lie in W :
2(Rd), i.e., the approach of identifying a critical eigenvalue

of the transfer operator allows the identification of the common smoothness
of the functions in 8. In contrast, the results in this section allow a separate
estimation of the smoothness of each , # 8.

4. MEASURING SMOOTHNESS

We prove here Lemmata 2.8, 2.11 and an additional lemma
(Lemma 4.3). That additional lemma allows us to apply the results of the
previous section in the estimation of smoothness in the unisotropic case.

Let , be a tempered distribution whose Fourier transform ,� can be iden-
tified with a function in L2, loc(R

d). Let *>1 be given. One of the equiv-
alent definitions of the Sobolev space W :

2(Rd) goes as follows. Let

Vk :=[| # Rd : K*k&1�|||�K*k], (4.1)

with K some fixed positive number. Let : # R. Then , # W :
2(Rd) if and only

if the sequence

c: : N � R+ : k [ *:k &,� &L2(Vk) (4.2)

lies in l2(N). This means that the critical smoothness :(,) (defined after
(2.1)) can be alternatively defined by

:(,) :=sup[: # R : c: # l�(N)].

(In fact, the relation c: # l� is one of the definitions of the Besov space
B:

�(L2(Rd)).)

Proof of Lemma 2.8. In view of the above, we need to show that, given
a complete system U of order l, and given any :, the sequence c: of (4.2)
is bounded if and, in case :<l, only if the sequence

cu
: : k [ *:k &,� 2 Dku&1�2

L1(Rd)

is bounded, for every u # U. Clearly, we may assume without loss that U is
the singleton [u] (otherwise, we may define a new complete system
U$ :=[�u # U u]). The crux of the proof is that, since the dilation is
isotropic, and if we denote by / the support function of V0 , then D j/ is the
support function of Vj . Therefore, for any integers k, j, &Dkf &L�(Vj)

=
& f &L�(Vj&k) . We use that fact in the sequel without further comment.
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Now, since u has an isolated zero at the origin, then, assuming K is small
enough, u is bounded below on V0 by some positive constant C 2. This
mean that

&,� 2 Dku&1�2
L1(Rd )�C &,� &L2(Vk) .

Thus, if cu
: is bounded, so is c: .

Note that the sequence cu
0 is certainly bounded (since u is bounded and

, # L2), hence that we may prove the converse only for :>0. For that, we
write Rd as the union of [Bj]j�0 , with B0 the ball of radius K, and Bj=Vj ,
for j�1. Since u has a zero at the origin of order 2l, and since we assume
c: to be bounded, we can estimate

&,� 2 Dku&1�2
L1(Bj)

�&Dku&1�2
L�(Bj)

&,� &L2(Bj)
�const {*l( j&k)*&:j,

*&:j,
j�k
otherwise.

Summing over j=0, 1, ..., and invoking the assumption :<l, we obtain
that

&,� 2 Dku&1�2
L1(Rd )=O(*&:k),

hence that the sequence cu
: is bounded. K

Lemma 2.8 requires the assumption that the dilation is isotropic. That
assumption is crucial for the sharp estimation of &Dku&L�(Vj)

that appears
in the proof. If the dilation is not isotropic, then one has two options to
pursue. The first, as was essentially done in [CGV], is to define smooth-
ness in terms of the decay rates of

&,� 2 Dku&.

In this case, we immediately get extensions of all the main results of this
article to the unisotropic case, as well, only that ``smoothness'' is now a
non-standard notion.

We prefer, instead, to provide in this case lower and upper bounds on
the standard regularity parameter (something that already appears in
[CGV], too).

Lemma 4.3. Let s be a dilation matrix whose spectral radius is *+ , and
whose inverse has a spectral radius 1�*& . Let U be a complete system of
order l. Set

ak(u, ,) :=&,� 2 Dku&1�2
L1(Rd ) ,
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and define

:+(U, ,) :=&max
u # U

lim sup
k � �

log*+
ak(u, ,)
k

,

and

:&(U, ,) :=&max
u # U

lim sup
k � �

log*&
ak(u, ,)
k

.

Then :+(U, ,)�:(,), and, if :(,)<l, then :(,)�:&(U, ,).

Proof. Let u # U. Note that, since u has a zero of order 2l at the origin,

|Dku(|)|=O( |s*&k||2l)=*&2lk
& O( |||2l).

We choose * in (4.1) to be our present *& . Then the above yields the
estimate

&Dku&1�2
L�(Vj)

=O(*l( j&k)
& ),

and with that in hand, the second part of the proof of Lemma 2.8 applies
verbatim to yield that, if :(,)<l, then :(,)�:&(U, ,).

Now, let :<:+(U, ,). This implies that the sequence k [ *:k
+&,� 2 Dku&1�2

L1(Rd)

is square-summable, for every u # U. Hence, with u :=�u # U u,

,� 2 :
�

k=0

*2k:
+ Dku (4.4)

is integrable. Let (Vk)k be a system of the type (4.1) with respect to
* :=*+ , and let /k be the support function of Vk . We need to show that
, # W :

2(Rd), which is equivalent to the integrability of

,� 2 :
�

k=0

*2k:
+ /k .

In view of the integrability of (4.4), this will follow once we show that

:
�

k=0

*2k:
+ Dku�C :

�

k=0

*2k:
+ /k .

For that, we take 0 to be a relatively compact neighborhood of the origin,
and set V :=0"(s*&10). Then V is disjoint of some neighborhood of the
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origin. Upon replacing V by some dilate s*&kV of it, if necessary, we can
assume without loss of generality that V is disjoint of each Vk , k=1, 2, ...,
and that 1�u is bounded on V (the latter can be assumed since u has an
isolated zero at the origin). Note that the s*-dilations of V fill all Rd"0.
With / the support function of V, we first see that, since 1�u is bounded on
V, Dku�CDk/, hence

:
�

k=0

*2k:
+ Dku�C :

�

k=0

*2k:
+ Dk/.

On the other hand, since *+ is the spectral radius of s*, it is easy to see
that, whenever

/k(|)=Dk$/(|)=1,

we must have that k$�k. Therefore,

:
�

k=0

*2k:
+ Dk/� :

�

k=0

*2k:
+ /k .

Consequently, :�:(,), and hence :+(U, ,)�:(,). K

Finally, we prove Lemma 2.11.

Proof of Lemma 2.11. Let Bk be the ball of radius *kK which is cen-
tered at the origin. It is easy to prove that, for any :<0, , # W :

2(Rd) if and
only if the sequence

k [ *k: &,� &L2(Bk)

is square-summable. Let a be the supremum of all : for which this sequence
is bounded. Clearly, a�0, a=0 if and only if :(,)�0, and otherwise
a=:(,).

Since we assume &̂(0){0, we can choose K sufficiently small to ensure
that |&̂|2�C>0 on B0 , which is equivalent to the inequality |Dk&̂| 2�C on
Bk . Thus, nk :=&,� Dk&̂&L2(Rd )�C&,� &L2(Bk) . Thus, since ;(&, ,) is the supremum
of : that keeps k [ *:knk bounded, we see that :(,)�a�;(&, ,). Since a�0,
so must be ;(&, ,). Also, if ;(&, ,)=0, then a=0, and hence :(,)�0.
Moreover, if :(,)>0, then (nk)k is bounded, hence ;(&, ,) cannot be negative,
hence must be 0.

Now, assume 0�:(,)>&l; then a=:(,). Let &l<:�:(,), and let
Vk :=Bk "Bk&1 . Then, since &̂ vanishes at � to order 2l, we have
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&,� Dk&̂&2
L2(Rd"Bk)= :

�

j=k+1

&,� Dk&̂&2
L2(Vj)

�c :
�

j=k+1

*2l(k& j) &,� &2
L2(Vj)

�c :
�

j=k+1

*2:( j&k) &,� &2
L2(Vj)

=O(*&2:k).

Thus,

*2:k &,� Dk&̂&2
L2(Rd )�*2:k &,� &2

L2(Bk)+O(1)=O(1).

It follows thus that, in this case, ;(&, ,)�:(,), hence that equality
holds. K
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